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In this work, different models of hydrodynamic interaction (HI) are examined in the diffusion-controlled
reaction between uniformly reactive charged spherical particles. In addition to Oseen “stick” and “slip” models
of HI, one is considered that accounts for the disturbance of fluid flow by the ions around one reactive
partner as they interact with a neighboring reactive species. This interaction is closely related to the
“electrophoretic effect” in electrokinetics and can be described by a fairly simple electrophoretic, or E-tensor.
These models are applied to the electron-transfer quenching reaction of Ru(bpy)3

2+ and methyl viologen
(MV2+) over a wide range of NaCl concentrations (Chiorboli, C. et al.,J. Phys. Chem. 1988, 92, 156). The
back reaction is also considered. From a comparison of the salt dependence of the model and experimental
rates, it is concluded that the “E-tensor” model works best and ignoring HI altogether works worst. The
Oseen “stick” and “slip” models fall between these.

Introduction

The rates of bimolecular reactions in solution are limited by
the rate of diffusional encounter between reactive species. This
upper bound “diffusion-controlled reaction” rate has been the
subject of extensive investigation that has its origins in
Smoluchowski theory.1,2 In this theory, the reactant partners are
assumed to be spherical, uniformly reactive, and move through
a viscous medium by simple diffusion. In addition, direct and
hydrodynamic interactions are ignored. The importance of direct
electrostatic interaction was recognized early and incorporated
into the Smoluchowski theory by Debye.3 Since many reactions
that approach diffusion control are enzyme-substrate reactions,
where at least one of the species is reactive only over a part of
its surface, considerable attention has been devoted to modeling
where at least one of the reactants, both assumed spherical, is
reactive only over a portion of its surface.4-7 To deal with still
more complex features, such as irregularly shaped reactants
bearing arbitrary charge distributions, Brownian dynamics
trajectory methods have been developed and successfully applied
to a range of problems.8-10

As two reactants diffuse toward each other in solution, the
intervening solvent is perturbed in different ways, and this
produces “hydrodynamic interaction”. Most, but not all, bio-
molecular transport phenomena, translational and rotational
diffusion constants in particular, have been accurately accounted
for by detailed modeling that employs “stick” hydrodynamic
boundary conditions on the model structures.11-13 In the case
of “stick” boundary conditions, fluid and particle velocities
match at the (local) fluid/particle interface.14 For “slip” boundary
conditions, on the other hand, only the local normal component
of the fluid and particle velocities match at the interface. In
addition, there is no tangential component of the fluid stress
tensor at the interface.15 In the case ofrotational diffusion of
small molecules in aqueous solution, boundary conditions
intermediate between stick and slip appear to be appropriate.16

In the theory of diffusion-controlled reactions, hydrodynamic
interaction (HI) has proven to be problematic. In what shall be

referred to in the present work as the “conventional treatment”
of HI, fluid stresses are assumed to have their source in surface
contact forces that act at the fluid-particle interface. Subject
to the assumptions of this “conventional treatment”, the diffu-
sion-controlled reaction rate between uniformly reactive spheres
in the absence of direct interactions is predicted to vanish when
HI is accounted for using stick boundary conditions.17 In past
work, this apparently spectacular failure of hydrodynamics has
been dealt with in several ways. One way has been to
approximate HI using the Oseen tensor18 with stick boundary
conditions. In the framework of the “conventional treatment”,
this approach is exact in the limit of large separation.19,20 An
alternative approach has been to approximate HI using slip
boundary conditions,17 but otherwise retain the assumptions of
the “conventional treatment”. For uniformly reactive spherical
species in the absence of direct forces, this model gives
diffusion-controlled reaction rates that are smaller than the
Smoluchowski rate, which ignores HI, but larger than the rate
predicted using the Oseen tensor with “stick” boundary condi-
tions.17 The objective of the present work is to propose a simple
and yet realistic alternative to both Oseen “stick” and “slip”
representations of HI discussed above.

Many reactants involved in diffusion-controlled reactions are
charged, and consequently electrostatic interactions must be
accounted for. The fluid flow in the vicinity of a translating
uncharged sphere in a fluid that is stationary at large distances
under conditions of stick14 or slip17 boundary conditions is very
different from that of a translating charged sphere in a salt
solution (stationary at large distances) subjected to a constant
external electric field.21 There is a straightforward physical
interpretation for these differences that is well-known to
investigators in the field of electrokinetics.22,23When a charged
sphere is subjected to an electric field, the field will exert a
direct force on the sphere and this, in turn, gives rise to the
variety of hydrodynamic interaction discussed in the previous
paragraph. In addition, however, the electric field interacts with
the ions that cluster around the sphere, and this interaction gives
rise to a hydrodynamic backflow on the host sphere. This is
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the “electrophoretic effect”.22,23As mentioned above, Huckel21

derived the fluid velocity and pressure fields corresponding to
this problem many years ago. More recently, the corresponding
interaction tensor of a small, weakly charged sphere in an
incompressible fluid, placed in a constant external electric field,
was derived.24 This tensor, which shall be called the electro-
phoretic, or simply E-tensor, reduces to the Oseen tensor in the
limit of zero salt. Over the past few years, our lab has made
use of this tensor in modeling the electrophoretic mobility of
bead arrays25 and peptides.26

In the present work, the E-tensor shall be applied to the
problem of diffusion controlled reactions between charged,
uniformly reactive spheres. In the next “Theory” section, the
relevant equations for diffusion controlled reactions are reviewed
and the incorporation of the E-tensor is discussed. In the results
section, rate constants are compared for several different models
of intersphere HI. In addition, this modeling is applied to the
experimental data of an electron-transfer reaction that was
carried out over a wide range of salt conditions.27 It is shown
that the E-tensor, like the “slip” Oseen tensor, predicts a smaller
reduction in reaction rate due to HI than the “stick” Oseen case.
From a comparison with the experimental data, it is concluded
that although discrepancies remain, modeling with the E-tensor
yields better agreement with experiment than any of the other
models. We conclude with a brief discussion of applications of
the E-tensor to future studies of diffusion-controlled reactions.

Theory

Consider two uniformly reactive spheres of radiia1 anda2,
respectively. Letr denote the center-to-center distance between
the two spheres that also bear chargesqz1 andqz2 at their centers,
whereq is the protonic charge and thez’s are valencies. The
solvent is modeled as a continuum and is assumed to be an
incompressible, Newtonian fluid of viscosityη and relative
dielectric constantεr. The solvent also contains salt of ionic
strengthI. The potential of mean force,U(r), between the two
spheres is approximated with a Debye-Huckel potential28

whereX ) 4π (in CGS units) or 1/ε0 whereε0 is the permittivity
of free space (in MKSA units),d represents an “effective
complex radius”, andκ is the Debye-Huckel screening
parameter,

In eq 2 above,kB is Boltzmann’s constant andT is absolute
temperature. The Debye-Huckel theory is a continuum mean
field theory valid at low electrostatic potentials. If the co- and
counterions are not much smaller than than the reactive species,
one might question the accuracy of applying such a model to
diffusion-controlled reactions between charged species. Brown-
ian dynamics simulations of diffusion-controlled reactions
between ions that include co- and counterions explicitly have
shown that Debye-Huckel theory is quite accurate in predicting
ion distributions as well as the potential of mean force between
the reactive partners.29

It is assumed that the two spheres instantly react if they
approach within a (center-to-center) distance ofb. The diffusion-
controlled rate constant,kD(b), in L/(mol s), is given by30

whereNAv is Avogadro’s Number, andDM(r) is the distant-
dependent relative diffusion coefficient given by

In eq 4,n ) r/ r, r ) |r |, T(r ) is the hydrodynamic interaction
(HI) tensor (see below), andDM

0 is the mutual diffusion
constant in the absence of HI. It can be written

where c equals 6 or 4 for “stick” or “slip” hydrodynamic
boundary conditions, respectively. In the absence of direct
forces, (U(r) ) 0) or HI (T(r ) ) 0 in eq 4), eq 3 reduces to the
Smoluchowski value,1,2 kD

0(b),

As discussed in the introduction, the primary focus of the
present work is modeling HI between the reactive spheres. In
the simplest case, it is simply ignored (T(r ) ) 0 in eq 4). In
the “conventional treatment” of HI, where fluid stresses arise
exclusively from surface contact forces that act at the fluid-
particle interfaces,T(r ) can be approximated by the Oseen
tensor,17,18 TO(r )

whereI is the 3 by 3 identity tensor andnn ) rr /r2 is the unit
position dyadic. Equation 7 is valid for both “stick” and “slip”
boundary conditions. These two cases differ, however, in the
form of DM

0 as discussed following eq 5.17 Within the frame-
work of the “conventional treatment”, eq 7 is only exact at large
r. It should be emphasized, however, that since charge-charge
interactions between the reactive species and ions in the fluid
also perturb the fluid flow, the assumptions of the “conventional
treatment” render it approximate to begin with.

As an alternative to eq 7, which accounts for the interaction
of the charges between the reactive species and ions in the fluid,
we turn to the singular solution of a weak point charge subject
to a constant external electric field.24 This, in turn, has its roots
in the work of Huckel.21 From the singular solution, we can
define the E-tensor

where
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In the limit κ f 0, eq 8 reduces to eq 7. Equation 8 is strictly
valid for a small sphere placed in auniformelectric field. Since
the electric field in the vicinity of a “host” reactive sphere due
to the presence of a reactive neighbor will vary over the ion
atmosphere of the “host” particle, eq 8 is approximate. Nonethe-
less, it does account, to lowest order, for the contribution of
the “electrophoretic effect” to the HI between two charged
particles. In cases where eq 8 is used, “stick” boundary
conditions are used forDM

0 .
In the following section,kD(b) is computed for the diffusion-

controlled reaction between two charged species. The potential
of mean force,U(r), is always approximated using eq 1, but HI
is treated differently. For reasonable input parameters, eq 3 is
integrated numerically.

Results and Discussion

Consider the bimolecular rate constant,kq, for the quenching
of electronically excited Ru(bpy)3

2+ by methyl viologen (MV2+)
that was extensively studied by Chiorboli and co-workers.27 The
quenching reaction, carried out in aqueous salt solutions, can
be summarized

This reaction approaches the diffusion controlled limit, involves
relatively simple reactive species, and was studied over a wide
range of salt concentrations. It shall serve as a good test case
to assess the various HI models discussed in the previous section.
Here, we shall only consider the above reaction in NaCl where
the salt concentration is varied from 0.01 to 1.6 mol/L. Many
of the parameters used in modeling are taken directly from
experiment.27 These includeT ) 293 K, εr ) 80.2,a1 ) 0.70
nm (Ru(bpy)32+), anda2 ) 0.33 nm (MV2+). Also, the viscosity
of NaCl solutions varies from 1.002 to 1.161 cp as the salt
solution varies from 0.01 to 1.6 mol/L. Care is taken to use the
correct solvent viscosity in the model calculations ofkD(b).31

Summarized in Table 1 are model diffusion-controlled rates
obtained by numerically integrating eq 3 using the above
parameters for four different models of HI. We setb ) d ) a1

+ a2 in this case. Table 2 contains similar results withb ) a1

+ a2, butd ) a1. In both cases, the reactive species must diffuse
to within 1.03 nm for a reaction to occur, but the ion exclusion
radius,d, is larger for the results in Table 1, which accounts
for the lower reaction rates. From these tables and for the same
model of HI, the ratio ofkD(b) at the highest salt tokD(b) at the
lowest salt falls in the range of 2.2 to 2.7 for all models except
for the electrophoretic model, where this ratio equals 3.4-3.5.
Thus, the electrophoretic model (which uses the E-tensor)
exhibits a stronger salt dependence than the other models.
Another observation is that at high salt, model rates usingTE

approach those with no HI. In other words, HI is effectively
eliminated in the electrophoretic model in the limit of high salt.
The model rates in Tables 1 and 2 are all higher than the
experimental rates because the latter are not strictly diffusion
controlled, perhaps because of additional geometric con-
straints on reactivity. If we make the reasonable assumption
thatkq/kD(b) is independent of salt concentration, we can make
a clearer comparison between experiment and model rates. If
the ratiokq/kD(b) (d ) a1 + a2 in the model studies) is averaged
over the eight different salt concentrations measured experi-
mentally, we obtain 0.300 (no HI), 0.393 (Oseen slip), 0.277
(Oseen stick), and 0.354 (E). Shown in Figure 1 is a plot of
model rates,kmod, as well as the experimental rates,kq, versus
salt concentration. In this example, the rates in Table 1 have

been scaled by 0.300 (no HI), etc. to bring them into agreement
with experiment when averaged overall salt concentrations
studied experimentally. For the conditions used in Table 1, the
relative discrepancy,<(kmod/kq - 1)2>1/2, averaged overall salt
concentrations, equals 0.408 (no HI), 0.367 (Oseen slip), 0.337
(Oseen stick), and 0.205 (E). If the same procedure is applied
to the results from Table 2, a graph almost identical to Figure
1 is obtained.

Next, consider the “back” electron-transfer reaction also
studied by Chiorboli et al.,27

This reaction is modeled in exactly the same way as the
quenching reaction considered previously. Ford ) a1 + a2,
the ratiokb/kD(b) averaged over all salt concentrations equals
0.780 (no HI), 0.710 (Oseen slip), 1.362 (Oseen stick), and 0.889

*Ru(bpy)3
2+ + MV2+ 98

kq
Ru(bpy)3

3+ + MV+ (11)

Figure 1. Dependence ofkq on NaCl concentration. Experimental rates
are denoted by filled squares. Various model rates are crosses- no
HI, diamonds- Oseen tensor with slip boundary conditions, unfilled
squares- Oseen tensor with stick boundary conditions, asterisks-
E-tensor.

TABLE 1

kD(b)/109 (d ) a1 + a2)

I (mol/L) no HI TO (slip) TO (stick) TE

0.010 2.658 2.737 1.355 1.705
0.018 3.030 3.136 1.559 2.058
0.031 3.477 3.625 1.811 2.514
0.054 3.990 4.197 2.110 3.077
0.095 4.539 4.825 2.445 3.727
0.168 5.078 5.461 2.793 4.412
0.295 5.548 6.038 3.117 5.050
0.518 5.891 6.483 3.378 5.553
0.910 6.045 6.717 3.531 5.836
1.60 5.910 6.621 3.505 5.793

TABLE 2

kD(b)/109 (d ) a1)

I (mol/L) no HI TO (slip) TO (stick) TE

0.010 2.738 2.826 1.402 1.762
0.018 3.160 3.283 1.637 2.156
0.031 3.680 3.858 1.936 2.677
0.054 4.286 4.544 2.300 3.331
0.095 4.936 5.304 2.713 4.089
0.168 5.560 6.061 3.137 4.873
0.295 6.075 6.715 3.516 5.571
0.518 6.405 7.164 3.790 6.070
0.910 6.493 7.328 3.909 6.290
1.60 6.257 7.103 3.811 6.144

Ru(bpy)3
3+ + MV+ 98

kb
Ru(bpy)3

2+ + MV2+

13866 J. Phys. Chem. A, Vol. 110, No. 51, 2006 Allison



(E). It is interesting to note in this case that the experimental
rate actuallyexceeds kD(b) for the Oseen model with “stick”
boundary conditions. SincekD(b) should represent an absolute
upper bound on reaction rate, this result suggests the Oseen
stick model overestimates HI. If we repeat the procedure applied
to kq of simply scaling the modelkD(b)’s by 0.780 (no HI), etc.
to bring model and experimental rates into agreement when
averaged over all salt concentrations, Figure 2 is obtained. For
the back reaction, the relative discrepancy,<(kmod/kb - 1)2>1/2,
averaged overall salt concentrations, equals 0.112 (no HI), 0.093
(Oseen slip), 0.078 (Oseen stick), and 0.063 (E). Although the
Oseen stick results yield a relative discrepancy that is compa-
rable to that obtained using the electrophoretic model, it should
also be remembered that the Oseen stick model yields absolute
model rates that actually exceed experimental rates which is
unphysical.

From Figures 1 and 2, it can be concluded that the HI model
using the E-tensor (asterisks) yields a salt dependence in better
agreement with experiment (filled squares) than the other
models. Perhaps not surprisingly, the model that made no
correction for HI yields the poorest agreement with experiment.
Both Oseen stick (unfilled squares) and Oseen slip (diamonds)
models perform slightly better, but not as well as the E-tensor.
It should be emphasized that the Oseen stick and slip models
are approximate in the framework of the “conventional treat-
ment” of HI since they are strictly valid only at larger. Also,
the E-tensor model is approximate since it assumes the external
field is uniform over the ionic atmospheres of the reactant
spheres. As discussed in the previous paragraph, the Oseen stick
model, actuallyunderestimates kb, which is unphysical.

Conclusions

In this work, several models of hydrodynamic interaction have
been examined within the framework of diffusion-controlled

reactions between charged, uniformly reactive spherical par-
ticles. In comparing model rates with experimental rates of an
electron-transfer reaction as a function of salt concentration, it
is concluded that a model that accounts for the electrophoretic
effect (hydrodynamic backflow generated by the interaction of
counterions with external electric fields) is in better agreement
with experiment than “Oseen” models, or a model that ignores
hydrodynamic interaction altogether. On simple physical grounds,
we feel this electrophoretic effect should be significant provided
the reactant particles bear charges and salt is present. It should
be emphasized that this E-tensor model is approximate. Perhaps
its greatest shortcoming, when applied to diffusion-controlled
reactions, is its failure to account for the variation in the
“external” electric field over the counterion atmosphere of a
“host” particle. In the future, we plan to extend this treatment
to more complex enzyme-substrate reactions, which involves
the use of Brownian dynamics.8-10
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E-tensor.
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